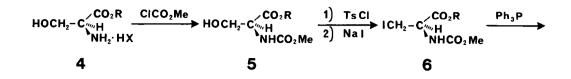
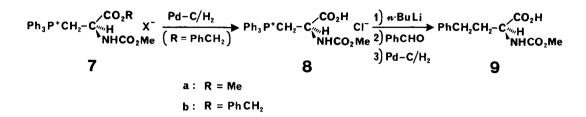

SYNTHESIS OF (S)-(-)-WYBUTINE, THE FLUORESCENT MINOR BASE FROM YEAST PHENYLALANINE TRANSFER RIBONUCLEIC ACIDS

Taisuke Itaya* and Akemi Mizutani

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan


Abstract ----- The Wittig reaction of 1-benzyl-7-formylwye (12) with (R)-[2-carboxy-2-[(meth-oxycarbonyl)amino]ethyl]triphenylphosphonium chloride (8) followed by successive methylation and reduction gave (-)-wybutine [(S)-1a].


The structures of the fluorescent minor bases from various eukaryotic tRNAs^{Phe} have been elucidated as $1.^{1}$ An under-modified base 2 has been also isolated from tumor-specific tRNAs^{Phe} in place of normal $1b.^{2}$ An (S) configuration has been assigned to the chiral center of wybutine (1a) from <u>Saccharomyces cerevisiae</u> tRNA^{Phe} on the basis of the CD spectrum of a derivative of a degradation product of $1a.^{3}$ Nakanishi and his co-workers³ reported the synthesis of (\pm)-1a by the cyclocondensation of 3-methylguanine with methyl 5-bromo-2-[(methoxycarbonyl)amino]-6-oxoheptanoate (3). They reported also that the reaction of 3 with 7-benzyl-3-methylguanine (15) followed by hydrogenolysis gave the better results.⁴ We now wish to record here the first synthesis of the optically active form of wybutine [(S)-1a].

Since it seemed difficult to obtain the optically active bromoketone 3, we designed a different method from that of the precedents.^{3,4} Although several attempts failed in introducing a carbon side chain at the 7-position of 1-benzylwye (10),⁴ the Vilsmeier-Haack reaction of 10 (POCl₃-DMF) successfully gave 1-benzyl-7-formylwye [12: 100% yield; mp 228-229°C; ¹HNMR (CDCl₃) δ : 2.70 (s, CMe), 4.01 (s, NMe), 5.65 (s, CH₂), 7.37 (s, Ph), 7.76 (s, C₍₂₎-H), 10.88 (s, CHO)].⁵ The site of the formyl group was confirmed by conversion of 12 into 7-methylwye [16: monohydrate; mp>300°C; ¹HNMR (Me₂SO-d₆) δ : 2.11 (s, C₍₆₎-Me), 2.56 (s, C₍₇₎-Me), 3.73 (s, NMe), 8.12 (s, C₍₂₎-H), 13.51 (br, NH)] through the alcohol 14 by NaBH₄ reduction followed by catalytic hydrogenolysis over Pd-C. The structure 16 was supported by direct comparison with a sample prepared by the reaction of 15 and 3-bromo-2-butanone followed by hydrogenolysis.

The Wittig reaction of 12 with an appropriate ylide would give a type of compound 13, which appears to be a good intermediate for the synthesis of not only 1a but also the other congeners,

1b,c and 2. (S)-Serine methyl ester hydrochloride $(4a: X = Cl)^6$ was treated with methyl chloroformate in aqueous NaHCO₃ and the carbamate 5a thus obtained was transformed into the iodide 6a (53% overall yield; mp 105-106°C) through the tosylate according to reported procedures.^{7,8} On treatment with triphenylphosphine in toluene (50°C, 34 days), 6a gave the phosphonium iodide 7a [X = I; 76% yield; mp 148-153°C (dec.)]. However, the Wittig reaction with 7a (n-BuLi/ THF; -78°C) failed owing to tendency of this type of compound to suffer β -elimination.⁹

Successful reactions of the ylide from (2-carboxyethyl)triphenylphosphonium chloride with ketones have been reported.¹⁰ For the synthesis of the requisite carboxylic acid **8**, the benzyl ester 7b [X = I; mp 143-146°C (dec.)] was prepared from (S)-serine benzyl ester tosylate (4b: X = TsO)¹¹ in a manner similar to that described for 7a in 67% overall yield. Compound 7b (X = I) was transformed into the chloride with Amberlyst A-26 (Cl⁻) and then hydrogenated over Pd-C to give **8** [96% yield; ¹HNMR (Me₂SO-d₆) δ : 3.30 (s, Me), 3.70-4.50 (br, CH₂CH), 7.50 (br, NH), 7.60-8.00 (m, Ph); $[\alpha]_D^{24} + 52^{\circ}(c=0.50, CHCl_3)$] as a glass. The Wittig reaction of **8** with benz-aldehyde (*n*-BuLi/THF-HMPA; -78--18°C) followed by catalytic hydrogenation over Pd-C gave **9** [mp 102-105°C; $[\alpha]_{365}^{24} + 29.9 \pm 0.4^{\circ} (c=0.538, MeOH)$] in 13% yield. It was shown that the configuration of the chiral center was fairly retained through the reaction sequence by comparison of this sample with an authentic **9** [$[\alpha]_{365}^{25} + 30.2 \pm 0.4^{\circ} (c=0.540, MeOH)$] derived from (S)-2-amino-4-phenylbutyric acid.¹²

The tricyclic aldehyde 12 was finally treated with 8 (n-BuLi/THF-HMPA; -78--15°C) to afford the desired 13 [5% yield; mp 176-178°C; ¹HNMR (CDCl₃) &: 2.39 (s, CMe), 3.72 and 3.81 (s each, OMe), 3.90 (s, NMe), 5.10 (br, $C_{(3')}$ -H), 5.60 (s, CH_2), 5.78 (d-d, J = 8 and 16 Hz, $C=C_{(2)}-H$, 7.35 (s, Ph), 7.64 (s, $C_{(2)}-H$), 7.68 (d, J = 16 Hz, $C=C_{(1)}-H$); $[\alpha]_{D}^{24}+44 \pm 2^{\circ}$ (c = 0.20, MeOH)] and a trace of a rearranged product 11 [¹HNMR (CDCl₃) δ : 2.73 (CMe)]¹³ after methylation with trimethylsilyldiazomethane.¹⁴ Differentiation between the two structures **11** and **13** is based on the chemical shifts of the C-methyl groups.^{13,3,4,15} A (E) configuration is assignable to 13 on the basis of the coupling constants for the olefinic protons and no (Z)-isomer of 13 was detected in this reaction. Catalytic reduction of 13 over Pd-C achieved hydrogenation of the double bond of the side chain and subsequent debenzylation over Pd-C in the presence of $HClO_4$ afforded (-)-wybutine [(S)-1a: 74% yield; mp 200-204°C (dec.); $[\alpha]_D^{26}$ -40 ± 1° (c = 0.14, MeOH)]. The structure of this compound was supported by direct comparison with (\pm) - 1a, which was prepared according to the reported procedure.^{4,16} The negative Cotton effects reported for the CD spectrum of wybutine^{1a,b,e} are consistent with those of the present sample of (S)-1a [(10% MeOH) $\Delta \epsilon_{264}$ -1.1 ± 0.1, $\Delta \epsilon_{235}$ -4.4 ± 0.3], confirming that the chiral center of wybutine has an (S) configuration.17

The present work has illustrated the usefulness of 8 as a chiral building block for construction of homologues of alanine.

Acknowledgment —— This work was supported by a Grant-in-Aid for Scientific Research (No. 59570890) from the Ministry of Education, Science and Culture, Japan.

REFERENCES AND NOTES

 a) K. Nakanishi, N. Furutachi, M. Funamizu, D. Grunberger, and I. B. Weinstein, J. Am. <u>Chem. Soc.</u>, 92, 7617 (1970); b) R. Thiebe, H. G. Zachau, L. Baczynskyj, K. Biemann, and J. Sonnenbichler, <u>Biochim. Biophys. Acta</u>, 240, 163 (1971); c) K. Nakanishi, S. Blobstein, M. Funamizu, N. Furutachi, G. van Lear, D. Grunberger, K. W. Lanks, and I. B. Weinstein, Nature, New Biol., 234, 107 (1971); d) S. H. Blobstein, D. Grunberger, I. B. Weinstein, and K. Nakanishi, <u>Biochemistry</u>, <u>12</u>, 188 (1973); e) A. M. Feinberg, K. Nakanishi, J. Barciszewski, A. J. Rafalski, H. Augustyniak, and M. Wiewiórowski, <u>J. Am. Chem. Soc.</u>, <u>96</u>, 7797 (1974); f) H. Kasai, Z. Yamaizumi, Y. Kuchino, and S. Nishimura, <u>Nucleic Acids</u> <u>Res.</u>, <u>6</u>, 993 (1979); g) A. Mochizuki, Y. Omata, and Y. Miyazawa, <u>Bull. Chem. Soc. Jpn.</u>, <u>53</u>, 813 (1980).

- 2. a) Y. Kuchino, H. Kasai, Z. Yamaizumi, S. Nishimura, and E. Borek, <u>Biochim. Biophys.</u>
 <u>Acta</u>, 565, 215 (1979); b) Y. Kuchino, E. Borek, D. Grunberger, J. F. Mushinski, and S. Nishimura, <u>Nucleic Acids Res.</u>, 10, 6421 (1982).
- M. Funamizu, A. Terahara, A. M. Feinberg, and K. Nakanishi, <u>J. Am. Chem. Soc.</u>, <u>93</u>, 6706 (1971).
- 4. C. R. Frihart, A. M. Feinberg, and K. Nakanishi, J. Org. Chem., 43, 1644 (1978).
- 5. Complete analytical and/or spectral data were obtained for all new compounds reported.
- 6. Purchased from Tokyo Chemical Industry Co., Ltd.
- 7. D. Theodoropoulos, I. L. Schwartz, and R. Walter, Biochemistry, 6, 3927 (1967).
- 8. M. L. P. Monsigny, D. Delay, and M. Vaculik, Carbohydr. Res., 59, 589 (1977).
- 9. a) P. F. Alewood, J. W. Perich, and R. B. Johns, <u>Aust. J. Chem.</u>, <u>37</u>, 429 (1984); b) J. A. Bajgrowicz, A. El Hallaoui, R. Jacquier, Ch. Pigière, Ph. Viallefont, <u>Tetrahedron Lett.</u>, <u>25</u>, 2759 (1984).
- 10. H. S. Corey, Jr., J. R. D. McCormick, and W. E. Swensen, J. Am. Chem. Soc., 86, 1884 (1964).
- 11. G. Fölsch, <u>Acta Chem. Scand</u>., 13, 1407 (1959).
- 12. Kindly gifted by Dr. N. Takamura, Tanabe Seiyaku Co., Ltd.
- 13. Details of the rearrangement will be discussed elsewhere.
- 14. a) N. Hashimoto, T. Aoyama, and T. Shioiri, <u>Chem. Pharm. Bull.</u>, 29, 1475 (1981); b) Y. Hamada and T. Shioiri, <u>ibid.</u>, 30, 1921 (1982); c) S. Mori, I. Sakai, T. Aoyama, and T. Shioiri, <u>ibid.</u>, 30, 3380 (1982); d) M. Martin, <u>Synth. Commun.</u>, 13, 809 (1983).
- a) H. Kasai, M. Goto, S. Takemura, T. Goto, and S. Matsuura, <u>Tetrahedron Lett.</u>, <u>1971</u>, 2725; b) H. Kasai, M. Goto, K. Ikeda, M. Zama, Y. Mizuno, S. Takemura, S. Matsuura, T. Sugimoto, and T. Goto, <u>Biochemistry</u>, <u>15</u>, 898 (1976).
- 16. We obtained 3 by bromination of the corresponding ketone in 22% yield after repeated column chromatography. Cyclocondensation of 12 with 3 gave (±)-1-benzylwybutine (mp 176-177°C) in 6% yield (lit.⁴ 20% yield). Hydrogenolysis of this compound was achieved over Pd-C in MeOH in the presence of HClO₄ to give (±)-1a [89% yield; mp 214-215°C (dec.) (lit.³ mp 204-206°C); UV λ_{max} (95% EtOH) 235 nm (ε 34500), 257 (sh) (5700), 309 (5500); ¹HNMR (Me₂-SO-d₆) δ : 1.92 (m, C_(2')-H₂), 2.10 (s, CMe), 3.06 (m, C_(1')-H₂), 3.56 and 3.58 (s each, OMe), 3.76 (s, NMe), 3.88 (m, CH), 7.64 (d, J = 7 Hz, NHCO₂Me), 8.16 (s, C₍₂₎-H), 13.54 (br, N₍₁₎-H)].
- 17. The assignment of the configuration by Funamizu *et al.*³ is somewhat puzzling. They reported that wybutine afforded dimethyl [(methoxycarbonyl)amino]glutarate with negative and positive CD Cotton effects, respectively, at 232 and 207 nm, which are inconsistent with those [$\Delta \varepsilon 0.14$ (232 nm), -0.76 (206)] reported for an authentic sample derived from (S)-glutamic acid.

(Received in Japan 18 October 1984)